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Abstract

5 to 200keV displacement cascades in zirconium are studied in the binary collision approximation with the simula-

tion code Marlowe. The cascades are analysed statistically by means of component analysis, fuzzy clustering and iso-

data analysis. As a consequence of the large recoil ranges and range straggling specific to open hcp lattices like Zr, a

large dispersion of the frequencies of Frenkel pair distributions is found, as well as of the spatial extent and morphology

of vacancy and interstitial distributions. In Zr, cascades are formed by a widespread distribution of displacement clus-

ters that can be small. Remarkably, the size and morphology distributions of these clusters are found independent of the

primary recoil energy in the energy range investigated.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

Zirconium-based materials are used in nuclear tech-

nology because of their resistance to neutron irradiation.

However, radiation damage accumulates on the long

term and hampers mechanical properties and resistance

against corrosion. This problem motivates substantial

effort in order to understand damage evolution in radia-

tion environment. For understanding, model systems are

considered and a significant amount of comprehensive

experimental studies is available [1]. With experimental

techniques, macroscopic and mesoscopic properties

and their modifications can be identified. However, radi-
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ation damage initiates from the interaction of neutrons

with atoms and develops at the atomic scale. This leads

to a major difficulty since the information which can be

gathered experimentally at the atomic scale is limited.

For this reason, atomic scale and multiscale computer

modelling are developed with the hope to bridge the

gap between the initial damaging processes and the mac-

roscopic material modifications. The SIRENA project

[2] is one initiative in this direction and the present work

enters in this context. This study aims at understanding

the first steps of damage evolution as a consequence of a

collision between a neutron and an atom in the Zr lat-

tice. Such a collision results in the knock-off of an ener-

getic Zr atom and the primary energies considered here

range from 5 to 200keV. The primary knock-on atom

(PKA) looses its energy via electronic excitation and

by generating a cascade of secondary knock-on atoms.

This cascade is responsible for more than 90% of the
ed.
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energy dissipation which results in a series of stable

vacancies and interstitials. These represent the primary

damage. Its generation does not require more than 1ps

and its frequency and spatial distributions are character-

ised below. Point defects and particularly interstitials,

are mobile. Since typical temperatures in radiation envi-

ronment are of the order of several hundred Kelvin,

thermal diffusion is activated and cascade point defects

regroup to form complexes [3,4]. The characteristic time

for their formation is less than 1ns. This represents the

defect evolution stage next to the generation of point

defects. In a third stage, these complexes may grow

because of further primary damage generation in the

environment and give rise to still larger defects, as dislo-

cation loops, that can be observed experimentally.

The natural modelling technique for predicting

atomic-scale damage generation is molecular dynamics

(MD) and it is nowadays realistic to follow the evolution

of a collection of collision cascades over 1ns, hence,

until the recombination of vacancies and interstitials

into complexes. Previous cascade studies in cubic mate-

rials demonstrate a large dispersion of point defect cas-

cade properties, making it necessary to generate samples

of tens of thousands of events for characterizing their

properties correctly. This is not feasible by full MD,

but this objective can be reached within limited compu-

ter effort by using the binary collision approximation

(BCA) of MD. This approximation is well-known and

will not be presented here in detail. It is described in

detail, for instance, in [5]. Many comparisons between

BCA and full MD are available, for instance, in [6–10].

In the next section, the essential features of the BCA

model are given and the parameterization of BCA on

MD is discussed, leading to a comprehensive prediction

of the number of Frenkel pairs on the damage energy.

Section 3 describes the tools used to analyse vacancy

and interstitial distributions, and the properties of these

distributions are emphasised in Section 4. The picture

emerging from this analysis is summarised in Section 5.
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Fig. 1. Mean number of Frenkel pairs vs. the initial PKA

energy as obtained for iron by MD and BCA at 100K.
2. Parameterisation of the binary collision approximation

In the binary collision approximation as used in the

Marlowe program [11], collision cascades are modelled

as sequences of binary encounters. For trajectory calcu-

lation, we use the Molière approximation to the Tho-

mas–Fermi potential [12] with the expression of the

screening length suggested by Firsov [13]. The binary

collisions are ordered in time, so as to respect the chron-

ological development of the cascades. Lattice atoms are

considered as bound to their equilibrium position with a

binding energy equal to the cohesive energy of Zr. The

sequence of collisions undergone by each atom in the

cascades is calculated until its kinetic energy falls below

the value of the cohesive energy. For the purpose of
comparison with MD, electronic energy losses along

the trajectories are neglected and, as a consequence,

the PKA energy is entirely available for damage.

At the end of each cascade, vacancies and interstitials

are assumed to recombine thermally if their separation

distance is smaller than some recombination distance

used as a parameter. A Frenkel pair is thus assumed

to be stable only if the distance between the vacancy

and the interstitial exceeds a threshold recombination

distance, rc. If the separation is smaller than rc then a

Frenkel pair is considered to recombine athermally.

Using this model, it was found in a previous work, in

the case of copper and gold [7], that the time dependence

of the number of moving cascade atoms with total

energy above a given value is in good agreement with

full MD as long as this given value is positive. When

the total energy is negative, a purely repulsive potential

as used here is unsuitable. This recombination distance

can be adjusted by matching the number of stable

Frenkel pairs produced for the prediction of full MD.

The procedure was already successfully applied to cas-

cades in iron for a PKA energy range between 5 and

20keV [8]. Adjusting rc in such a way as to match the

number of Frenkel pairs predicted in the BCA to the

MD prediction for a given PKA energy, good matching

was found over the whole range of energies considered

and the number of Frenkel pairs produced is not signif-

icantly dependent on the potential used. More MD re-

sults, covering a larger energy range, are presently

available. Since full MD estimates of the number of

Frenkel pairs in Zr are not quite numerous, it is worth

briefly revisiting the problem of such a parameterization

in the case of Fe prior to the case of Zr. In Fig. 1, we

show a comparison for Fe using a number of MD data

known from literature [8,14–16]. According to [14] we

can find an approximation of the dependence of the

number Frenkel pairs, NF, on the PKA energy, E, as

NF = A�Em, where E is expressed in keV. In Table 1,



Table 1

Exponents m in the dependence of the number of Frenkel pairs, NF, on PKA energy, E, (NF = A*Em) as obtained by fitting different

molecular dynamics (MD) and binary collision approximation (BCA) results for iron

E < 1keV 1 < E < 10keV E > 10keV References

0.78 MD, [14]

0.485 0.795 1.12 MD, [15]

0.87 MD, [8]

0.62 0.79 1.08 MD, [16]

0.945 BCA, [8], (AMLJ potential)

0.957 BCA, present work, (Molière potential)

In the BCA, results obtained with the average modified Lens-Jensens (AMLJ) potential are given.
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Fig. 2. Mean number of Frenkel pairs vs. initial PKA energy as

obtained by MD and BCA for cascades in Zr at 100K. Squares:

MD results in [14,19]; dashed line: fitting equation of the for

MD results (m = 0.74); circles: BCA results; solid line: fitting

equation for BCA results (m = 0.925). The recombination

distance is matched at 10keV. Standard deviations of the

BCA frequency distributions are shown by vertical bars.

Standard errors on BCA results are smaller than the size of

the points.
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the exponent m in this expression is given for the differ-

ent MD and BCA results presented in Fig. 1. The depen-

dences obtained with the BCA have the same exponent

in the whole energy range from 0.1 to 100keV whereas

the MD dependence has no constant slope. Hence, the

MD exponents vary with PKA energy. BCA results in

the present work and in [8] were obtained with different

potentials and therefore different values of the recombi-

nation radius rc were used. The exponent m is not found

significantly dependent on the recombination radius, nor

on the potential. In Fig. 1 and Table 1 it is seen that the

agreement between MD and BCA is the best at high

energies. Here, the Molière potential was used, with

rc = 4.75 lattice units. The value of the exponent m = 1

is consistent with the ballistic theory of Kinchin and

Pease [17] and, subsequently, with the so-called NRT

model [18]. The exponent m < 1 is determined empiri-

cally and no physical interpretation is suggested nowa-

days. The coincidence of the BCA and MD for m

tending to 1 at high PKA energy indicates the ballistic

character of the collision cascades while the origin of

the offset at low PKA energy obtained by MD is still

the purpose of on-going studies.

The same analysis is now repeated for the case of zir-

conium. We use the MD results in [14,19] for adjusting

the recombination radius at 10keV PKA energy. The

matching value of rc is 5 lattice units and this value is

not significantly temperature dependent. The compari-

son is possible in the energy range from 0.5 to 20keV

in which MD data are available and the results are

shown in Fig. 2 for energies between 0.5 and 200keV.

In this energy range, like for Fe, it is seen that the expo-

nent of the power law is lower in the case of MD than

predicted in the BCA. The exponent in the BCA results

is again close to unity and is not significantly dependent

on the recombination distance used. It is also found

independent of the value of the screening distance in

the Molière potential. Anyway, the comparison shows

that, within the energy range from 5 to 20keV and with

such a recombination radius, the quantitative agreement

between MD and the BCA is excellent. It is still reason-

able both at lower and at higher energies. This incites

using the BCA with good statistics for collision cascade
calculations at high energies instead of MD calculations

that would be prohibitively long. The statistical analysis

of the results in Fig. 2 reveals a very significant difference

between the cases of Zr and Fe. In the latter, both in

MD and BCA predictions, the standard deviation of

the frequency distribution of the number of Frenkel

pairs are a few percent [8,20,21], even at high energy,

consistent with the early analytical theory for structure-

less materials [22]. The standard deviation of the Frenkel

pair frequency distributions is not larger than the size of

the points represented in Fig. 1 (no more than 5% of the

mean). They are represented in Fig. 2 in the case of Zr,

which has an hcp structure. The standard deviation is

20% of the mean at 5keV energy. It increases with en-

ergy and is found as high as 50% of the mean at

25keV and 85% of the mean at 200keV. Hence, the dis-

persion which is huge as compared to other BCA results,
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Fig. 3. Mean ranges (a) and ranges straggling (b) for different

Zr model structures, as predicted in the BCA.

128 M. Hou, D. Kulikov / Journal of Nuclear Materials 336 (2005) 125–134
increases with the PKA energy. It is worth mentioning

here that, although the dispersion is large, by accumulat-

ing statistics over 5000 cascades at each energy, the

standard error on the mean in Fig. 2 is no more than

1% at 200keV. The origin of such broad frequency dis-

tributions is identified to originate from two factors: one

is the lower density of Zr and the second is the hcp struc-

ture which is more open in several directions than cubic

structures and equally compact in others. It was possible

to reach this conclusion by running BCA simulations

with artificial crystals. Since the BCA does not require

the system to be at mechanical equilibrium, it is possible

to modify one single parameter keeping all others con-

stant. The first parameter changed was the mass of Zr

in order to check for an isotopic effect. The primary en-

ergy was 25keV. It was found that doubling the mass of

Zr brings no modification in the Frenkel pair distance

distribution nor to the standard deviation of the fre-

quency distributions for each Frenkel pair separation

distance. These frequencies remain about 50% of the

mean, whatever the separation distances. This large dis-

persion is a lattice effect which can be illustrated by pri-

mary recoil range distributions. Mean primary recoil

ranges are shown in Fig. 3(a) and ranges straggling in

Fig. 3(b). Like for calculating cascades, primaries are

initiated at a lattice site and their initial directions are se-

lected isotropically and at random. Primary trajectories

are followed until their kinetic energy falls below a cut-

off value equal to the cohesive energy of Zr. The range is

the measure of the distance between the end point and

the initial location of the primary. The straggling is the

standard deviation of the range distribution. Both mean

PKA ranges and straggling are found to be fast increas-

ing functions of the initial energy. The straggling reaches

100% of the mean at 200keV which is to be compared

with the 85% standard deviation of the Frenkel pair fre-

quency distribution in Fig. 2. It is straightforward in a

BCA code to model an amorphous solid. In Marlowe,

an amorphous structure is modelled by a random rota-

tion of the lattice structure before each collision. This

procedure preserves the density of the crystalline mate-

rial as well as the first neighbour distances and it

destroys directional correlations. Using this model, pri-

mary recoil calculations were repeated, keeping all other

model parameters constant. The reduction of the range

and straggling, as compared to the case of a single crys-

tal, is drastic. This demonstrates the strong directional

effect on recoil ranges in crystalline Zr. The fact that

the dispersion of recoil ranges is large reveals that the

dispersion of specific energy loss by primaries is large

too, hence the number of secondary recoils and, subse-

quently, the number of Frenkel pairs. The qualitative

difference between the dispersion of BCA results in Figs.

1 and 2 can be explained as well. This can be done by

repeating the range calculations again, assigning an arti-

ficial bcc structure to the lattice and adjusting the lattice
distance in such a way that the density is the same as the

hcp. As seen in Fig. 3, mean ranges and range straggling

are found to be similar to the case of amorphous Zr.

First neighbour distances in the bcc and the hcp lattices

are comparable. The difference found in range distribu-

tions thus reflects the important role of the lattice anisot-

ropy, which is more pronounced in hexagonal than in

cubic lattices. It should be noticed that lattice anisotropy

is not the only factor determining the range distribu-

tions. For instance, as already known from the range

theory for structureless materials [23], they are also

dependent on the material density. This is illustrated in

Fig. 3 for hcp Zr by repeating the range calculations

again, in a hypothetical Zr structure having the same

c/a ratio as the real one but twice its density. Both the

ranges and the straggling are significantly decreased,

about a factor 2, but the effect is not as strong as the

effect of the lattice anisotropy.

The characteristics of PKA range distributions dis-

cussed here have consequences not only on the number,

but also on the spatial distributions of point defects. We

thus present below a study of vacancy and interstitial
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distributions similar to that presented for iron in [8].

However, displacement cascades in Zr differ substan-

tially from cascades in Fe and additional analysis tools

are necessary. We use a fuzzy clustering method [24]

completed by an Isodata analysis [25,26]. Although the

detail of the method is presented in [27], it may be useful

to summarize the basis, prior to the analysis. This is

done in the next section.
Fig. 4. One model cascade generated by a 100keV primary

knock-on atom. Vacancies are represented by light spheres and

interstitials by dark spheres.
3. Component analysis, fuzzy clustering and isodata

3.1. Component analysis

Displacement cascades are formed by vacancies and

interstitials having, usually, different spatial extents.

Their overall spatial distribution may conveniently be

characterised by an ellipsoid of which axes directions

and lengths are determined by component analysis

(CA) [28]. We used CA extensively in previous studies

of displacement cascades, generated in the BCA as well

as by full MD, in iron. The directions of the axes are

those of the eigenvectors of the covariance matrix of

the spatial distribution. The associated eigenvalues, la-

belled a2, b2 and c2 in what follows are proportional

to the variance of the spatial distribution projected onto

the eigenvectors. The vectors parallel to the eigenvectors

with lengths a, b and c, and origin at the mean position

of the distribution are the components. These vectors

subtend the ellipsoid mentioned above which is taken

as representative of the cascade volume and morphol-

ogy. However, cascades may be complex objects and

their representation by a single ellipsoid may not be suf-

ficient, as is the case for Zr. Cascades may be formed by

more than one convex cloud of point defects (vacancies

or interstitials) and these may be connected by pipes,

they may overlap or they may be well separated. This

complexity is illustrated in Fig. 4 showing vacancies

and interstitials generated by one 100keV PKA. A visual

inspection is not sufficient to surely distinguish subcas-

cades, their overlaps and pipes, nor to decide which

point defect belongs to which subcascade since their

boundaries are fuzzy. It was therefore suggested in [27]

to consider them as such and to apply the concepts of

the theory of fuzzy sets to their analysis.

3.2. Fuzzy clustering

The theory of fuzzy sets, initiated by Zadeh [24], is

merely a generalisation of the theory of conventional

sets. A conventional set, with centre C, has well-defined

boundaries and is defined by a characteristic function

vðKCÞ ¼ 1 if x 2 KC and 0 otherwise: ð1Þ

In the theory of fuzzy sets, this characteristic function is

replaced by a �grade of membership� or �membership
function�, v(KC), of an object to a cluster KC. The func-

tion v (KC) is a function defined between 0 and 1. For

the analysis of cascades, we use a class of membership

functions that can be expressed as

vðKCÞ ¼ f ½gðx;CÞ�: ð2Þ

Here, v(KC) = 0 if x does not belong to KC and

v(KC) = 1 for the object x which belongs �the most� to
KC. The grade of membership is a monotonic function

of a distance g(x,x*) between an object x and a proto-

type x* defined as the object C in KC such that

v(KC) = 1. This way, it is admitted that an object may

have a fractional non-zero grade of membership to

different sets. Fuzzy clustering appears as a way of

measuring the distance between an object and a proto-

type. If there are several prototypes, distances may be
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comparable and define an overlap between subsets. The

distance of an object to each prototype may be such

large and its grade of membership to each subset such

small that it is considered as isolated. This representa-

tion for point defect distributions is quite convenient

as it allows deciding if a point defect belongs to a sub-

cascade, to an overlap between subcascades or is iso-

lated. In [27] it is suggested to use CA for associating

an ellipsoid to each subcascade KC and to define a mem-

bership function

vðKCÞ ¼ expð�g2Þ with g2 ¼ x2

a2
þ y2

b2
þ z2

c2
; ð3Þ

where g is the Euclidian distance between point defect at

(x,y,z) to the cluster centre C, weighted to the cluster

size. This definition accounts for the configuration

anisotropy and it scales with the cluster size. Points with

a grade of membership v (KC) > 1/e define the �core� of
KC.

Up to this point, it is assumed that prototypes exist a

priori. In our problem however, the number and the

location of subcascades are not known a priori and they

must be identified. The Isodata analysis technique is

used therefore.

3.3. Isodata analysis

A general presentation is available in [25,26] and we

here summarise its application to clouds of point defects.

The method consists in building a hierarchy of point de-

fects subsets by iterative splitting of the overall set of

vacancies or interstitials. The possibility for a cluster

to split is based on a minimal dispersion principle. In

[27] an algorithm is described for finding a partition of

a cluster into two parts which minimises the sum of their

variances projected onto one of its components. This

algorithm is used in the present work. In order to decide

the status of a point defect, one defines a �degree of fuz-
ziness� which is used as a parameter, among other in

view of comparison with experimental observation

which has intrinsically limited resolution. If m is the

degree of fuzziness, a point is considered as isolated if

vðKCÞ < 10�m 8 KC: ð4Þ

In order to define the overlap between two clusters K

and L, one considers the function

X ¼ lg
vðKÞ
vðLÞ

� �����
����þ 1: ð5Þ

X measures the order of magnitude difference between

the grade of membership to clusters K and L. This al-

lows to define the degree of fuzziness introduced in (4)

by the relation

m� 1 < X < m: ð6Þ
Points for which this relation is satisfied belong to the

overlap between clusters K and L. If m = 0 (correspond-

ing to infinite experimental resolution), all points are

considered as isolated. If m = 1, they all belong to the

same cluster and no splitting is retained. This way, no

prototype is defined a priori, but their pattern depends

on the degree of fuzziness which has a univocal relation

to the resolution of an experimental technique. As a con-

sequence of splitting, grades of membership have to be

reassigned and the fuzzy clustering to be repeated itera-

tively until a stable configuration is found. This iteration

procedure includes the possibility of lumping. The sepa-

ration between subcascades is rejected to the degree m if

more than n1/2 points of cluster K or L belong to the

overlap with the degree of fuzziness m.

The number of points in overlaps is a function of m.

It turns out to be no monotonous function of the degree

of fuzziness. It has a saw tooth profile and no a-priori

rule allows to predict at which value of m the number

of points in overlaps will be minimal. However, such a

minimum corresponds to the �hardest� partition of the

configuration. In order to find the hardest partition,

one uses m as a parameter and seeks for the minimum

of a suitable function of m. The hardest partition is

the closest to a partition into conventional sets. It is

therefore considered as the �best�. In the case of cascades

the function

f ðmÞ ¼ NðmÞmðmÞ; ð7Þ

where N(m) is the number of clusters at degree m and

m(m) the fraction of points in overlaps at the same de-

gree, when minimised, efficiently predicts the best parti-

tion. It will be used in what follows to characterise the

internal structure of point defects in cascades.

At this point, a question of terminology needs to be

clarified. In the present study, the concept of �cluster�
introduced above is a set of points having some non-zero

distance (according to Eq. (3)) to a prototype. In what

follows, the term �cluster� is used in that sense. This def-

inition is more general than another, often used in

describing point defect distributions, where a �cluster�
denotes a set of first, second, or eventually third neigh-

bouring point defects.
4. Displacement cascades structure in Zr

4.1. Overall structure

The overall structure of displacement cascades in Zr

is also different from what was found in earlier studies

for other materials. In iron for instance [8], cascade vol-

ume distributions were found quite widespread and sig-

nificantly skewed toward large volumes. A well-defined

mode was found in these distributions and, because of
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the long tail toward large volumes, the modal and mean

values differ substantially. These volume distributions

were evaluated in a PKA energy range where no sub-

stantial subcascade formation is expected. Similar distri-

bution profiles were found for cascade anisotropies. The

same estimates are here repeated for Zr, in the case of

cascades generated by PKA with recoil energies ranging

from 5 to 200keV. Volume distributions associated to

vacancies and to interstitials are shown in Fig. 5 for

5keV and for 50keV cascades.

In contrast with the case of iron, if one excepts the

distribution of volumes associated to interstitials at

5keV, the modes are in all cases in the first bin of the dis-

tributions that display a long tail toward high values.

The profiles in Fig. 5 are typical of all distributions

obtained at energies above 5keV.

At all energies, interstitial volume distributions ex-

tend to larger values than vacancies, suggesting the usual

picture where clouds of vacancies surrounded by interst-

itials form individual cascades. As shown below, this

picture merits some refinement.
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The distributions of cascades anisotropies are also

quite broad. These are shown in Fig. 6 for a 50keV

PKA energies. Again, the distinction is made between

vacancy and interstitial clouds. Fig. 6 is representative

of all energies investigated.

4.2. Internal structure

Although the cascade in Fig. 4 can certainly not be

considered as representative of all generated cascades,

it exemplifies typical features that merit further statisti-

cal analysis, now concerning the internal structure.

From an overall view of this cascade, it is easily possible

to estimate the direction of its principal component and

its overall anisotropy. As suggested by the results pre-

sented in the preceding section, the vacancy cloud is sur-

rounded by the interstitials. A more detailed look to this

cascade suggests it to be partitioned into several subcas-

cades. Within the two-dimensional view available in Fig.

4, five or six subgroups may be distinguished, depending

on the criterion used for distinguishing. Each of these
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Fig. 6. Distribution of the anisotropy factors of cascades

generated by 50keV PKAs. The anisotropy factor is the ratio

between the maximum and minimum elongations of the

ellipsoids associated to the cascades. When the anisotropy

factor is unity, the cascade morphology is spherical. Results are

given for vacancy and interstitial distributions distinctly. The

distributions displayed are representative of all distributions

obtained with other PKA energies. The largest anisotropies are

cumulated in the last bin of the distributions.
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groups is seen to be formed by a cloud of vacancies sur-

rounded by interstitials. This cannot be considered as a

scaling law because it fails to be correct when looking in

still further detail. However, it indicates that cascades

and defect clusters in cascades may be self-affine.

We use the fuzzy clustering approach presented in the

previous section in order to analyse the clustering into

subcascades quantitatively and on a statistical basis.

Best clustering configurations are identified. Fig. 7

shows the mean number of best clusters identified as a
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Fig. 7. Mean number of vacancy and interstitial clusters in

cascades as a function of the PKA energy. The saturation at

high cluster numbers is partly due to the limitation of the

isodata algorithm used.
function of the PKA energy. At high PKA energies, sat-

uration is observed which is probably – and at least par-

tially – due to the limitation of the isodata algorithm of

which the splitting hierarchy is not designed to identify

more than 16 clusters. The important point to notice

in this figure is that the mean number of vacancy clusters

identified is systematically larger than the number of

interstitial clusters. This suggests that, within one sub-

cascade, more than one group of vacancies can be

formed, surrounded by the same cloud of interstitials.

Fig. 8 shows the frequency distribution of the number

of vacancy (Fig. 8(a)) and interstitial (Fig. 8(b)) clusters

identified. This figure illustrates that the distributions

become increasingly broader with the PKA energy. It

also shows that, if one excepts the lowest PKA energy

for which subcascades are exceptional, a significant frac-

tion of cascades do not split into subcascades, and this

fraction (40% of interstitial distributions, 30% of va-

cancy distributions) is not much energy dependent.

Therefore, it cannot be considered, as sometimes advo-

cated for other materials, that high-energy cascades are
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Fig. 8. Frequency distributions of cascades formed by n

clusters. The results are displayed for all PKA energies

investigated. (a) Vacancy clusters and (b) interstitial clusters.
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systematically formed by distinct groups of lower energy

cascades.

The spatial extension and anisotropy of each of the

clusters identified can be studied, on a statistical basis,

the same way as the overall cascades. Therefore, compo-

nent analysis is thus used, and Fig. 9 gives, with the same

scale, the cluster volume distributions for vacancy and

interstitial clusters. It is remarkable to notice that the

cluster size distributions are almost energy independent.

Whatever the PKA energy, a large number of small va-

cancy clusters is found. However, about half of them

form the tail of the distributions. In contrast, as found

for the overall cascades and already seen in Fig. 3, inter-

stitial clusters are systematically larger. The anisotropy

distributions are shown in Fig. 10. Here again, it is

found that the morphology of the clusters in the cas-

cades is not much energy dependent. These results sug-
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Fig. 9. Distributions of cluster volumes in cascades as obtained

for the cases of the different PKA energies considered. (a)

Vacancy clusters and (b) interstitial clusters. The largest

volumes are reported in the last bin of the distributions. The

independence of these distributions on the PKA energy is

remarkable.
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Fig. 10. Distributions of cluster anisotropy factors in cascades

as obtained for the cases of the different PKA energies

considered. (a) Vacancy clusters and (b) interstitial clusters.

The largest anisotropies are reported in the last bin of the

distributions. The independence of these distributions on the

PKA energy is remarkable.
gest that similar small clusters of vacancies surrounded

by interstitials form a high fraction of cascades in Zr.

In the average, these small clusters become more numer-

ous and more distant from each other as the energy

of the PKA is increased.
5. Conclusion

Displacement cascades in Zr display specific features

that were not observed in previous studies on cubic

materials. These features were also found by repeating

several of the calculations described above with different

potentials. Because the lattice is hexagonal and atomic

separation distances large enough, Frenkel pair distribu-

tions have widths more than one order of magnitude

broader than in cubic or structureless materials. This is

found to correlate with broad PKA range distributions.
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This suggests that PKA having long ranges because of

their low specific energy loss, produce fewer displace-

ments than those having small ranges. Clusters of vacan-

cies and interstitials are produced and more than one

vacancy cluster may be surrounded by the same cloud

of interstitials. The width of cluster frequency distribu-

tions increases with energy. In contrast, volumes and

morphologies distributions are broad and, remarkably,

they do not depend on the primary energy. The picture

which comes out is that the primaries produce clusters

of displacements according to a probability distribution

specific to the Zr structure and independent of the PKA

energy. The number and separation distances between

the small clusters increase with the PKA energy. The

net result is overall cascade spatial extents with a mode

at the smallest sizes and a tail increasing with the PKA

energy.

Beyond what can be predicted in the BCA is the prob-

lem of point defect recombination caused by thermal dif-

fusion in the cascade area and the lattice relaxation. The

natural technique to tackle this problem is full MD. The

dispersion of cascade distributions and the overall spatial

extent of cascades are so large that gathering sufficient

statistics with large enough simulation boxes may nowa-

days be unpractical at high PKA energies. The fact that

cluster size and morphology distributions are energy

invariant contributes to save the situation.
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